A New Family of Mixed Methods for the Reissner-Mindlin Plate Model Based on a System of First-Order Equations

نویسندگان

  • Edwin M. Behrens
  • Johnny Guzmán
چکیده

The mixed method for the biharmonic problem introduced in [12] is extended to the Reissner-Mindlin plate model. The Reissner-Mindlin problem is written as a system of first order equations and all the resulting variables are approximated. However, the hybrid form of the method allows one to eliminate all the variables and have a final system only involving the Lagrange multipliers that approximate the transverse displacement and rotation at the edges of the triangulation. Mixed finite element spaces for elasticity with weakly imposed symmetry are used to approximate the bending moment matrix. Optimal estimates independent of the plate thickness are proved for the transverse displacement, rotation and bending moment. A post-processing technique is provided for the displacement and rotation variables and we show numerically that they converge faster than the original approximations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of the vibration modes of a plate by Reissner-Mindlin equations

This paper deals with the approximation of the vibration modes of a plate modelled by the Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced integration or mixed interpolation has to be used when solving these equations by finite element methods. In particular, one of the most widely used procedures is the mixed interpolation tensorial components,...

متن کامل

On Mixed Finite Element Methods for the Reissner-mindlin Plate Model

In this paper we analyze the convergence of mixed finite element approximations to the solution of the Reissner-Mindlin plate problem. We show that several known elements fall into our analysis, thus providing a unified approach. We also introduce a low-order triangular element which is optimalorder convergent uniformly in the plate thickness.

متن کامل

Generalized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate

This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...

متن کامل

Low Velocity Impact on Relatively Thick Rectangular Plate under In-plane Loads Resting on Pasternak Elastic Foundation

This study deals with the elastic-plastic impact on moderately thick rectangular plate subjected to uniform in-plane compressive loads resting on the Pasternak elastic foundation. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. The dimensionless...

متن کامل

Vibration and Buckling of Double-Graphene Sheet-Systems with an Attached Nanoparticle Based on Classical and Mindlin Plate Theories Considering Surface Effects

Vibration of double-graphene sheet-system is considered in this study. Graphene sheets are coupled by Pasternak elastic medium. Classic and Mindlin plate theories are utilized for modeling the coupled system. Upper sheet carries a moving mass. Governing equations are derived using energy method and Hamilton’s principle considering surface stress effects and nonlocal parameter.  Using Galerkin m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2011